Electricity demand forecasting in Ambon using machine learning techniques

Authors

  • Silvester Adi Surya Herjuna Sultan Agung Islamic University, Indonesia
  • Eka Nuryanto Budisusila Sultan Agung Islamic University, Indonesia
  • Muhammad Haddin Sultan Agung Islamic University, Indonesia

DOI:

https://doi.org/10.35335/computational.v13i2.179

Keywords:

Artificial neural networks, Electrical load forecasting, Energy management, Operational efficiency, Power system reliability

Abstract

This study aims to analyze the impact of electrical load forecasting using Artificial Neural Networks (ANN) to improve power supply reliability and efficiency in Ambon’s electric system. The objective is to develop a reliable forecasting model that supports effective energy management, helping to achieve operational excellence in terms of quality, safety, and cost-efficiency. A quantitative approach was utilized, gathering historical electricity load data from 2019 to 2024, alongside relevant environmental and temporal factors. The data were analyzed using ANN within a Python-based framework to predict future electricity demands accurately. The study employs a structured equation modeling to validate the forecasting model and its components. The findings reveal that the ANN model effectively predicts electrical loads with high accuracy, demonstrating substantial improvements in operational efficiency and energy cost reductions. The model’s ability to incorporate multiple input variables allows for nuanced understanding and prediction of load variations, thereby facilitating better resource allocation and strategic planning. This research contributes uniquely by applying ANN for electrical load forecasting in the context of Ambon’s electrical system, underscoring the integration of AI techniques in improving the operational efficiency of power utilities. The study extends the knowledge on the application of machine learning in the power sector by demonstrating how sophisticated forecasting models can significantly enhance energy management strategies

References

Alamsyah, I. E. (2023). Hari Listrik Nasional ke-78 Tegaskan Komitmen PLN Lanjutkan Transformasi untuk Indonesia. (Republika) Retrieved April 2, 2024, from https://ekonomi.republika.co.id/berita/s3p13z349/hari-listrik-nasional-ke78-tegaskan-komitmen-pln-lanjutkan-transformasi-untuk-indonesia

Aminulloh, H. R., & Kartini, U. T. (2020). Peramalan Beban Listrik Jangka Pendek Menggunakan Metode Fuzzy Multi-Attribute Decision Making Decomposition Feed Forward Neural Network (FMADM-Dec-FFNN). Jurnal Teknik Elektro, 9(3), 649-657, doi:10.26740/jte.v9n3.p649-657.

BPS Provinsi Maluku. (2024). Provinsi Maluku Dalam Angka. Ambon: Badan Pusat Statistik.

Damayanti, A. (2022). Gawat! Invasi Rusia ke Ukraina Bisa Bikin Harga BBM-Pangan Meroket. (detikFinance) Retrieved April 2, 2024, from https://finance.detik.com/berita-ekonomi-bisnis/d-5958143/gawat-invasi-rusia-ke-ukraina-bisa-bikin-harga-bbm-pangan-meroket

Deny, S. (2023). Retrieved April 4, 2024, from https://www.liputan6.com/bisnis/read/5423150/harga-minyak-dunia-menggila-imbas-perang-israel-hamas-palestina-cetak-kenaikan-terbesar

Deny, S. (2024). Retrieved April 16, 2024, from https://www.liputan6.com/bisnis/read/5573385/harga-minyak-dunia-meroket-imbas-serangan-balik-iran-ke-israel-stok-bbm-indonesia-aman

Fretes, R. (2020). Strategi Peningkatan Penjualan Energi Listrik (Studi Kasus: PT PLN (Persero) Area Ambon). ARIKA, 14(1), 65-74.

Gasparin, A., Lukovic, S., & Alippi, C. (2021). Deep learning for time series forecasting: The electric load case. CAAI Transactions on Intelligence Technology, 7(1), 1-25, doi:10.1049/cit2.12060.

Hussain, S. N., Aziz, A. A., Hossen, M. J., & Aziz, N. A. (2022). A Novel Framework Based on CNN-LSTM Neural Network for Prediction of Missing Values in Electricity Consumption Time-Series Datasets. Journal of Information Processing System, 18(1), 115-129, doi:10.3745/JIPS.04.0235.

Irawan, M. Z., Akil, Y. S., & Gunadin, I. C. (2022). Peramalan Beban Listrik Kota Maros Berbasis Extreme Learning Machine (ELM). Jurnal EKSITASI, 1(2), 22-28.

Kang, J., & Reiner, D. M. (2022). Off seasons, holidays and extreme weather events: Using data-mining techniques on smart meter and energy consumption data from China. Energy Research & Social Science, 89(102637), doi:10.1016/j.erss.2022.102637.

Kastanja, A. J., & Tupalessy, J. (2017). Peramalan Beban Listrik Kota Ambon Tahun 2016 - 2022. Jurnal Simetrik, 7(1), 41-46.

Kementerian ESDM. (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021-2030. Jakarta: PT PLN (Persero).

Latuamury, B., Marasabessy, H., Talaohu, M., & Imlabla, W. (2020). Small island watershed morphometric and hydrological characteristics in Ambon Region, Maluku Province. IOP Conference Series: Earth and Environmental Science, 800(012047), doi:10.1088/1755-1315/800/1/012047.

Malik, D. (2022). Perang Rusia Buat Harga BBM RI Meroket. (Viva.co.id) Retrieved April 2, 2024, from https://www.viva.co.id/berita/bisnis/1560514-viva-replay-2022-perang-rusia-buat-harga-bbm-ri-meroket

Mamun, A. A., Sohel, M., Mohammad, N., Sunny, M. S., Dipta, D. R., & Hossain, E. (2020). A Comprehensive Review of the Load Forecasting Techniques Using Single and Hybrid Predictive Models. IEEE Access, 8, 134911–134939, doi:10.1109/access.2020.3010702.

Masitoh, S., & Hidayat, K. (2024). Konflik Iran-Israel Panaskan Harga Minyak, Harga BBM Akan Naik? (Kontan.co.id) Retrieved April 18, 2024, from https://nasional.kontan.co.id/news/konflik-iran-israel-panaskan-harga-minyak-harga-bbm-akan-naik

Mustaqim. (2022). Prediksi Kebutuhan PLTS dan PLTB Berbasis Jaringan Saraf Tiruan. Semarang: Thesis, UNISSULA.

Nti, I. K., Teimeh, M., Nyarko-Boateng, O., & Adekoya, A. F. (2020). Electricity load forecasting: a systematic review. Journal of Electrical Systems and Information Technology, 7(13), 1-19, doi:10.1186/s43067-020-00021-8.

PLN. (2023). Overview Moonshot. Jakarta: PT PLN (Persero).

PLN. (2023). Rencana Jangka Panjang 2024-2028 & Pengembangan Program Strategis PLN. Jakarta: PT PLN (Persero).

PLN. (2023). The Next Chapter of PLN's Tranformation. Jakarta: PT PLN (Persero).

PLN. (2024). Rencana Operasi Bulanan Sistem Ambon Maret 2024. Ambon: PT PLN (Persero) UP3B Maluku.

Rodrigo, J. A., & Ortiz, J. E. (2023). Forecasting energy demand with machine learning. (Cienciadedatos.net) Retrieved January 18, 2024, from https://cienciadedatos.net/documentos/py29-forecasting-electricity-power-demand-python.html

Romzi, M., & Kurniawan, B. (2020). Pembelajaran Pemrograman Python Dengan Pendekatan Logika Algoritma. Jurnal Teknik Informatika Mahakarya, 3(2), 37-44.

Sesa, S., Suyono, H., & Hasanah, R. N. (2015). Peramalan Beban Listrik Jangka Menengah Menggunakan Jaringan Syaraf Tiruan Pada Sistem Kelistrikan Kota Ambon. Jurnal Arus Elektro Indonesia, 1(3), 19-25.

Sihombing, J. C. (2022). Kenaikan Harga BBM : Jahat atau Sepakat..??? (DJKN Kemenkeu) Retrieved April 2, 2024, from https://www.djkn.kemenkeu.go.id/kpknl-sidempuan/baca-artikel/15373/Kenaikan-Harga-BBM-Jahat-atau-Sepakat.html

Syahputra, R., Syahfitra, F. D., & Putra, K. T. (2020). Prediksi Beban Listrik Menggunakan Algoritma Jaringan Syaraf Tiruan Tipe Propagasi-Balik. Semesta Teknika, 23(2), 143-155, doi:10.18196/st.232264.

Zahra, A. F. (2023). Komitmen PLN Lanjutkan Transformasi untuk Indonesia. (Riaupos.co) Retrieved April 2, 2024, from https://riaupos.jawapos.com/ekonomi/2253597437/komitmen-pln-lanjutkan-transformasi-untuk-indonesia

Zhang, L., Wen, J., Li, Y., Chen, J., Ye, Y., Fu, Y., & Livingood, W. (2021). A review of machine learning in building load prediction. Applied Energy, 285(116452), doi:10.1016/j.apenergy.2021.116452.

Zhao, Y., Zhang, C., Zhang, Y., Wang, Z., & Li, J. (2020). A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis. Energy and Built Environment, 1(2), 149-164, doi:10.1016/j.enbenv.2019.11.003.

Downloads

Published

2024-08-14

How to Cite

Herjuna, S. A. S., Budisusila, E. N., & Haddin, M. (2024). Electricity demand forecasting in Ambon using machine learning techniques. International Journal of Mechanical Computational and Manufacturing Research, 13(2), 57–67. https://doi.org/10.35335/computational.v13i2.179